3.37 \(\int \frac{\text{csch}^2(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\)

Optimal. Leaf size=57 \[ -\frac{b \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{a^{3/2} d \sqrt{a-b}}-\frac{\coth (c+d x)}{a d} \]

[Out]

-((b*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(a^(3/2)*Sqrt[a - b]*d)) - Coth[c + d*x]/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0808976, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3187, 453, 208} \[ -\frac{b \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{a^{3/2} d \sqrt{a-b}}-\frac{\coth (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]^2/(a + b*Sinh[c + d*x]^2),x]

[Out]

-((b*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(a^(3/2)*Sqrt[a - b]*d)) - Coth[c + d*x]/(a*d)

Rule 3187

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*(a + (a + b)*ff^2*x^2)^p)/(1 + ff^2*x^2)^(m/2 + p
+ 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{csch}^2(c+d x)}{a+b \sinh ^2(c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1-x^2}{x^2 \left (a-(a-b) x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac{\coth (c+d x)}{a d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a+(-a+b) x^2} \, dx,x,\tanh (c+d x)\right )}{a d}\\ &=-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{a^{3/2} \sqrt{a-b} d}-\frac{\coth (c+d x)}{a d}\\ \end{align*}

Mathematica [A]  time = 0.292172, size = 57, normalized size = 1. \[ \frac{-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a-b} \tanh (c+d x)}{\sqrt{a}}\right )}{\sqrt{a-b}}-\sqrt{a} \coth (c+d x)}{a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]^2/(a + b*Sinh[c + d*x]^2),x]

[Out]

(-((b*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/Sqrt[a - b]) - Sqrt[a]*Coth[c + d*x])/(a^(3/2)*d)

________________________________________________________________________________________

Maple [B]  time = 0.061, size = 319, normalized size = 5.6 \begin{align*} -{\frac{1}{2\,da}\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{1}{2\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}-{\frac{b}{da}{\it Artanh} \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}}+{\frac{{b}^{2}}{da}{\it Artanh} \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{-b \left ( a-b \right ) }}}{\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }+a-2\,b \right ) a}}}}+{\frac{b}{da}\arctan \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}}+{\frac{{b}^{2}}{da}\arctan \left ({a\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}} \right ){\frac{1}{\sqrt{-b \left ( a-b \right ) }}}{\frac{1}{\sqrt{ \left ( 2\,\sqrt{-b \left ( a-b \right ) }-a+2\,b \right ) a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^2/(a+b*sinh(d*x+c)^2),x)

[Out]

-1/2/d/a*tanh(1/2*d*x+1/2*c)-1/2/d/a/tanh(1/2*d*x+1/2*c)-1/d*b/a/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(
a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))+1/d/a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*b)
*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))*b^2+1/d*b/a/((2*(-b*(a-b))^(1/2)
-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))+1/d/a/(-b*(a-b))^(1/2)/((2
*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))*b^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.21384, size = 1661, normalized size = 29.14 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*((b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*sqrt(a^2 - a*b)*log((b^2*c
osh(d*x + c)^4 + 4*b^2*cosh(d*x + c)*sinh(d*x + c)^3 + b^2*sinh(d*x + c)^4 + 2*(2*a*b - b^2)*cosh(d*x + c)^2 +
 2*(3*b^2*cosh(d*x + c)^2 + 2*a*b - b^2)*sinh(d*x + c)^2 + 8*a^2 - 8*a*b + b^2 + 4*(b^2*cosh(d*x + c)^3 + (2*a
*b - b^2)*cosh(d*x + c))*sinh(d*x + c) + 4*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x +
 c)^2 + 2*a - b)*sqrt(a^2 - a*b))/(b*cosh(d*x + c)^4 + 4*b*cosh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 +
 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 + 2*a - b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a
 - b)*cosh(d*x + c))*sinh(d*x + c) + b)) - 4*a^2 + 4*a*b)/((a^3 - a^2*b)*d*cosh(d*x + c)^2 + 2*(a^3 - a^2*b)*d
*cosh(d*x + c)*sinh(d*x + c) + (a^3 - a^2*b)*d*sinh(d*x + c)^2 - (a^3 - a^2*b)*d), ((b*cosh(d*x + c)^2 + 2*b*c
osh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 - b)*sqrt(-a^2 + a*b)*arctan(-1/2*(b*cosh(d*x + c)^2 + 2*b*cosh
(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + 2*a - b)*sqrt(-a^2 + a*b)/(a^2 - a*b)) - 2*a^2 + 2*a*b)/((a^3 -
a^2*b)*d*cosh(d*x + c)^2 + 2*(a^3 - a^2*b)*d*cosh(d*x + c)*sinh(d*x + c) + (a^3 - a^2*b)*d*sinh(d*x + c)^2 - (
a^3 - a^2*b)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**2/(a+b*sinh(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.30799, size = 100, normalized size = 1.75 \begin{align*} -\frac{b \arctan \left (\frac{b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a - b}{2 \, \sqrt{-a^{2} + a b}}\right )}{\sqrt{-a^{2} + a b} a d} - \frac{2}{a d{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

-b*arctan(1/2*(b*e^(2*d*x + 2*c) + 2*a - b)/sqrt(-a^2 + a*b))/(sqrt(-a^2 + a*b)*a*d) - 2/(a*d*(e^(2*d*x + 2*c)
 - 1))